If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+35n+24=0
a = 4; b = 35; c = +24;
Δ = b2-4ac
Δ = 352-4·4·24
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-29}{2*4}=\frac{-64}{8} =-8 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+29}{2*4}=\frac{-6}{8} =-3/4 $
| 6t-37=-3+8 | | 12x+10+13x+1=180 | | y+7/3=3 | | 4/a+3=23 | | -7(c-97)=7 | | 80+3g=230+2g | | 36+3t=87 | | 5=j/4-3 | | x*(-10)=87 | | 2/2x-5=3/5-x | | C(x)=2.5x+15 | | (3x+11)(5x-7)=0 | | -m/7=2.1 | | 2(x-5)=-5(2x-7) | | 8v-3(v+8)=8 | | 8x-12=7x-8 | | 7(s-98)=-49 | | 3(4x-12)=27 | | 4u=5u+10 | | (e+5)+1=19 | | -48p/16p^2-40p=0 | | -6(u-90)=-63 | | 5x+15=3x+30 | | 56=7(p-83) | | 10-2x=6x-15 | | z/2-4=-2 | | x+1+1+6x=3(x−4)−(x−4) | | -48p/16p(^2)-40p=0 | | 52=10j–-22 | | -2(x-1)=2(1-x) | | d+37/6=9 | | 2/3x7/10+2/3x-3/5=7/10x-3/5 |